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ABSTRACT
As we enter the era of peta-scale computing, system ar-

chitects must plan for machines composed of tens or even

hundreds of thousands of processors. Although fully con-

nected networks such as fat-tree configurations currently

dominate HPC interconnect designs, such approaches are

inadequate for ultra-scale concurrencies due to the super-

linear growth of component costs. Traditional low-degree

interconnect topologies, such as 3D tori, have reemerged as

a competitive solution due to the linear scaling of system

components relative to the node count; however, such net-

works are poorly suited for the requirements of many scien-

tific applications at extreme concurrencies. To address these

limitations, we propose HFAST, a hybrid switch architecture

that uses circuit switches to dynamically reconfigure lower-

degree interconnects to suit the topological requirements of

a given scientific application. This work presents several new

research contributions. We develop an optimization strategy

for HFAST mappings and demonstrate that efficiency gains

can be attained across a broad range of static numerical

computations. Additionally, we conduct an extensive anal-

ysis of the communication characteristics of a dynamically

adapting mesh calculation and show that the HFAST ap-

proach can achieve significant advantages, even when com-

pared with traditional fat-tree configurations. Overall re-

sults point to the promising potential of utilizing hybrid re-

configurable networks to interconnect future peta-scale ar-

chitectures, for both static and dynamically adapting appli-

cations.
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1. INTRODUCTION
For over two decades, the performance of commodity micro-

processor-based supercomputing systems has been reliant on

clock frequency improvements from the scaling of microchip

features due to Moore’s Law. However, since the introduc-

tion of 90nm chip technology, heat density and changes in

the dominant physical properties of silicon have moderated

the pace of clock frequency improvements. As a result, the

industry is increasingly reliant on unprecedented degrees of

parallelism to keep pace with the ever-growing demand of

high-end computing (HEC) capabilities. Thus, in the immi-

nent era of petaflop systems, computational platforms are

expected to be comprised of tens or even hundreds of thou-

sands of processors.

In today’s supercomputing landscape, fully-connected net-

works, such as crossbar and fat-tree configurations, dom-

inate HEC interconnect designs [21]. Unfortunately, the

component cost of these network topologies scale superlin-

early with the number of nodes in the system — making

these designs impractical (if not impossible) at the ultra-

scale level. Consequently, HEC system architects are in-

creasingly considering lower degree topological networks, such

as 2D and 3D tori, that scale linearly in cost relative to sys-

tem scale. However, adoption of networks with a lower topo-

logical degree of connectivity requires renewed attention to

application process placement, as a topology-oblivious pro-

cess mapping may result in significant performance degra-

dation. This kind of topological mismatch may be miti-

gated by sophisticated task migration and job-packing by

the batch system, but such migration impacts overall sys-

tem efficiency and is often too complex to implement on

modern parallel systems. Additionally, a growing fraction

of applications exhibit dynamically adapting computational

structures, due in part to the wider adoptance of multi-scale

simulation methodologies. These algorithms are character-

ized by evolving communication requirements, which change

dynamically at runtime. Statically mapping this class of

codes onto a lower degree interconnect topology may result

in hopelessly inefficient performance at large scale.

In response to these growing concerns, we propose HFAST,



a Hybrid Flexibly Adaptable Switch Topology (HFAST) [20]

that employs optical circuit switches (Layer-1) to dynami-

cally provision packet switch blocks (Layer-2) at runtime.

This work makes several important contributions. First,

we examine the topological communication characteristics of

state-of-the-art scientific computations across a broad range

of domains, including a comprehensive exploration of an

adaptive mesh refinement (AMR) calculation. Our analy-

sis represents the most detailed study of the evolving com-

munication requirements for a dynamic AMR simulation to

date. Next, we present a optimization methodology for

mapping application processes onto the HFAST architec-

ture, which minimizes the number of message hops across

the interconnect. Quantitative results on realistic, large-

scale applications demonstrate that, even for modest levels

of concurrency, the HFAST approach can be used to de-

sign an interconnect network as effective as a fat-tree, with

fewer switching resource requirements. Overall results point

to the promising potential of utilizing hybrid reconfigurable

networks to interconnect future peta-scale architectures, for

both static and dynamically adapting applications.

2. HYBRID SWITCH ARCHITECTURE
As the HEC community moves towards peta-scale archi-

tectures comprised of tens or hundreds of thousands of pro-

cessors, the industry will be hard-pressed to continue build-

ing cost-effective fully connected networks. For an alter-

native to fat-trees and traditional packet-switched intercon-

nect architectures, we can look to recent trends in the high-

speed wide area networking community, which has found

that lambda-switching — hybrid interconnects composed of

circuit switches together with packet switches — presents a

cost-effective solution to a similar set of problems.

2.1 Circuit Switch Technology
Packet switches, such as Ethernet, Infiniband, and Myri-

net, are the most commonly used interconnect solution for

large-scale parallel computing platforms; unfortunately, these

network technologies all have relatively high cost per-port.

A packet switch must read the header of each incoming

packet in order to determine on which port to send the

outgoing message. As bit rates increase, it becomes in-

creasingly difficult and expensive to make switching deci-

sions at line rate. Recently, fiber optic links have become

increasingly popular for cluster interconnects because they

can achieve higher data rates and lower bit-error rates over

long cables than low-voltage differential signaling over cop-

per wire. However, optical links require a transceiver that

converts from optical to electrical signals so the silicon cir-

cuits can perform their switching decisions. These Opti-

cal Electrical Optical (OEO) conversions further add to the

cost, latency, and power consumption of switches. Fully-

optical packet switches (i.e. that do not require an OEO

conversion) can eliminate the costly transceivers, but per-

port costs will likely be higher than an OEO switch due to

the need to use exotic optical materials in the implementa-

tion, such as in the recent OSMOSIS project, which was a

DARPA funded collaboration between IBM and Corning to

develop a fully optical packet switch [1].

Circuit switches, in contrast, create hard circuits between

endpoints in response to an external control plane — just

like an old telephone system operator’s patch panel — ob-

viating the need to make switching decisions at line speed.

They also eliminate the need for OEO conversion through

optical transceivers, which are costly and consume consider-

able power. As such, they have considerably lower complex-

ity and consequently lower cost per port. For optical inter-

connects, micro-electro-mechanical mirror (MEMS) based

optical circuit switches offer considerable power and cost

savings as they do not require expensive (and power-hungry)

OEO transceivers required by the active packet switches.

Also, because non-regenerative circuit switches create hard-

circuits instead of dynamically routed virtual circuits, they

contribute almost no latency to the switching path aside

from propagation delay. MEMS based optical switches, such

as those produced by Lucent, Calient and Glimmerglass, are

common in the telecommunications industry and their prices

are dropping rapidly as the market for the technology grows

larger and more competitive. Our work examines leverag-

ing MEMS-based circuit-switch technology, in the context

of ultra-scale parallel computing platforms.

Circuit switches have long been recognized as a cost-effect-

ive alternative to packet switches, but it has proven diffi-

cult to exploit this technology in cluster interconnects be-

cause the hard-wired circuit switches are oblivious to mes-

sage/packet boundaries. Although it is possible to recon-

figure the optical path through the circuit switch, the over-

head is on the order of milliseconds and one must be cer-

tain that no message traffic is propagating through the light

path when the reconfiguration occurs. The overhead of en-

suring the interconnect has achieved a quiescent state un-

dercuts the advantages of a pure circuit-switched approach.

In comparison, a packet-switched network can trivially mul-

tiplex and demultiplex messages destined for multiple hosts

without requiring any configuration changes. Our HFAST

approach overcomes the limitations of pure circuit-switched

approaches by applying packet switching resources judiciously

to maintain the cost advantages of circuit switching. De-

tailed discussions of these technologies as well as their im-

plementations and tradeoffs can be found in [3, 10,20].

Our proposed hybrid interconnect architecture has the

most similarity to the Interconnection Cached Network (ICN)

[10] approach. However, whereas the ICN would require task

migration to preserve optimal graph embedding, the HFAST

approach allows tasks to remain in-situ as the interconnect

adapts to the evolving job requirements. This feature is par-



ticularly advantageous for the adaptive applications that are

the focus of this paper.

2.2 HFAST: Hybrid Flexibly Assignable Switch
Topology
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Figure 1: General layout of HFAST (left) and ex-
ample configuration for 6 nodes and active switch
blocks of size 4 (right). In this example, node 1
can communicate with node 2 by sending a message
through the circuit switch (red) in switch block 1
(SB1), and back again through the circuit switch
(green) to node 2.

To address the limitations of pure packet- or circuit-based

switches, we propose the HFAST interconnect architecture,

composed of a hybrid mix of (Layer-1) passive/circuit switches

that dynamically provision (Layer-2) active/packet switch

blocks at runtime. This arrangement leverages the less ex-

pensive circuit switches to connect processing elements to-

gether into optimal communication topologies using far fewer

packet switches than would be required for an equivalent fat-

tree network composed of packet switches. Figure 1 shows

how the fully-connected passive circuit switches are placed

between the nodes and the active (packet) switches. The

communication topology is thus determined by the provi-

sioning of circuits between nodes and active switches, and

between blocks of active switches. This allows active packet

switch blocks to be used as a flexibly assignable pool of

resources that support adaptable formation of communica-

tion topologies without any job placement requirements. Us-

ing less-expensive circuit switches, the packet switch blocks

could emulate many different interconnect topologies such as

a 3D torus or densely-packed 3D mesh. Codes that exhibit

non-uniform degree of communication can be supported by

assigning additional packet switching resources to the pro-

cesses with greater communication demands. Additionally,

topology can be incrementally adjusted at runtime to match

the requirements of codes with dynamically adapting com-

munication patterns.

Furthermore, there are a number of research avenues to

leverage HFAST resources in a large-scale environment. One

approach is to study the compile-time instrumentation of

codes to infer communication topology requirements at compile-

time. In particular, languages like UPC offer a high-level ap-

proach for exposing communication requirements at compile-

time. Similarly, the compiler may be capable of automati-

cally inserting the necessary synchronization points in comm-

unication-free phases of the computation, allowing the cir-

cuit switches time to reconfigure since the Layer-1 switches

do not otherwise respect packet boundaries for in-flight mes-

sages.

Note that HFAST differs from the bounded-degree ICN

approach in that the fully-connected passive circuit switch

is placed between the nodes and the active (packet) switches.

This supports a more flexible formation of communication

topologies without any job placement requirements. Un-

like the ICN and OptIPuter [8], HFAST is able to treat the

packet switches as a flexibly assignable pool of resources. In

a sense, our approach is precisely the inverse of the ICN – the

processors are connected to the packet switch via the circuit

switch, whereas the ICN uses processors that are connected

to the circuit switch via an intervening packet switch.

In the HFAST context, the circuit switch technology is

most effective when a dedicated circuit is used primarily

for the bandwidth-bound messages. Our recent measure-

ments on a number of different existing interconnect archi-

tectures saw minimal improvements in performance of appli-

cations that were dominated by the smaller latency-bound

messages [20] (in spite of the theoretical ability of RDMA

to combine and pipeline small messages). Therefore, we fo-

cus on messages that are larger than the bandwidth-delay

product, defined as the minimum message size that can the-

oretically saturate the link — conservatively set to 4KB.

Our analysis filters out the latency-bound messages with

the assumption that they can be carried either as transit

traffic that requires several hops through the HFAST in-

terconnect topology to reach its destination, or routed to a

secondary low-latency low-bandwidth interconnect that uses

much lower cost components for handling collective com-

munications with small payloads. An example of such a

low-latency secondary network can be found in the Blue-

Gene/L Tree network [7], which is designed to handle fast

synchronization and collectives where the message payload

is typically very small.

3. NON-ADAPTIVE SCIENTIFIC
APPLICATIONS

To evaluate the potential effectiveness of HFAST, we must

first develop an understanding of the communication re-

quirements of scientific codes across a broad spectrum of

parallel algorithms. Here we examine the behavior of six

codes based on non-adaptive numerical methods, whose com-

munication patterns remain mostly static throughout the

course of the computation: Cactus, LBMHD, GTC, MAD-



Name Lines Discipline Problem and Method Structure

Cactus [6] 84,000 Astrophysics Einstein’s Theory of GR via Finite Differencing Grid
LBMHD [15] 1,500 Plasma Physics Magneto-Hydrodynamics via Lattice Boltzmann Lattice/Grid

GTC [14] 5,000 Magnetic Fusion Vlasov-Poisson Equation via Particle in Cell Particle/Grid
MADbench [5] 5,000 Cosmology CMB Analysis via Newton-Raphson Dense Matrix
ELBM3D [13] 3,000 Fluid Dynamics Fluid Dynamics vi Lattice Bolzmann Lattice/Grid

BeamBeam3D [18] 23,000 Particle Physics Poisson’s equation via Particle in Cell and FFT Particle/Grid

Table 1: Overview of the static scientific applications examined in this work.

% Communicating Average
Name P

Partners Messages/P

Cactus 1024 0.5% 12,018
LBMHD 256 4.6% 23,907

GTC 256 1.6% 5,595
MADbench 256 15.3% 14,122
ELBM3D 1024 0.6% 12,024

BeamBeam3D 1024 25.2% 8,952,000

Table 2: Communication intensity of static scientific applications examined in this work, showing percent of
communicating partners and the average (per processor) number of exchanged messages.

Processor

P
ro

ce
ss

or

BeamBeam3D Cactus ELBM3D GTC3 LBMHD MADbench

Figure 2: Communication topology of the static applications in our study (from left to right): Beam-
Beam3D (p=1024), Cactus (p=1024), GTC3 (p=256), ELBM3D (p=1024), LBMHD (p=256), and MAD-
bench (p=256).

bench, ELB3D, and BeamBeam3D. These codes represent

candidate ultra-scale applications that have the potential

to fully utilize leadership-class computing systems. A brief

overview is presented in Table 1; detailed descriptions of the

algorithms and scientific impact of these codes can be found

in [5, 6, 13–15,18].

Figure 2 shows the communication topologies for the static

applications in this study. The graphs provide the vol-

ume and pattern of message exchanges between all tasks

as recorded by the IPM [12] profiling layer. The X and Y

axes each represent the discrete range of 1 to P . If com-

munication occurs between two given processors x and y,

a point (x, y) is plotted on the plane; a darker color in-

tensity represents larger data volume exchange between the

two processors. Because we assume that switch links are bi-

directional, the values at (x, y) and (y, x) are always iden-

tical. The percentage of communicating partners for each

static application is quantified in Table 2, which shows the

relative sparseness of almost all the static topology graphs:

four of the six codes communicate with less then 5% of the

processors involved in the computation. These codes thus

reflect the large class of applications that vastly underutilize

a fully connected network.

4. ADAPTIVE MESH REFINEMENT CAL-
CULATION

In order to understand the potential of utilizing our hybrid

reconfigurable interconnect in the context of dynamically

adapting applications, we explore the communication de-

tails of an adaptive mesh refinement (AMR) calculation. Al-

though the AMR methodology has been actively researched

for over two decades [2], our work represents the first study

to quantify the evolving communication requirements of this

complex application.

AMR is a powerful technique that reduces the compu-

tational and memory resources required to solve otherwise

intractable problems in computational science. The AMR

strategy is to start with a problem on a relatively coarse

grid and dynamically refine it in regions of scientific inter-

est or where the coarse grid error is too high for proper



Figure 3: Deformation of Helium bubble as it passes through shock front in the AMR simulation.

numerical resolution. Not surprisingly, the software infras-

tructure necessary to dynamically manage the hierarchical

grid framework tends to make AMR codes far more com-

plicated than their uniform grid counterparts. Despite this

complexity, it is generally believed that future multi-scale

applications will increasingly rely on adaptive methods to

study problems at unprecedented scale and resolution.

A key component of an AMR calculation is dynamic mesh

regridding, which dynamically changes the grid hierarchy to

accurately capture the physical phenonema of interest. Cells

requiring enhanced resolution are identified and tagged us-

ing a specified error indicator, and then grouped into rectan-

gular patches that sometimes contain a few cells that were

not tagged for refinement. These rectangular patches are

then subdivided to form the grids at the next level. This

process is repeated until either the error tolerance criteria

is satisfied or a specified maximum level of refinement is

reached.

4.1 HyperCLaw Overview
Our work examines HyperCLaw, a hybrid C++/Fortran

AMR code developed and maintained by CCSE at LBNL [9,

19] where it is frequently used to solve systems of hyperbolic

conservation laws using a higher-order Godunov method.

In HyperCLaw most of the communication overhead oc-

curs in the FillPatch operation, which exihibits complicated

and irregular communication patterns. FillPatch presents a

very complex nonuniform but sparse communication pat-

tern. Once it completes, a higher-order Godunov solver

is applied to each resulting grid. This solver is compute-

intensive, requiring upwards of a full second for the problems

we ran in this study, during which time no interprocessor

communication occurs. HFAST circuit-switch reconfigura-

tion could therefore occur during this compute-only phase,

to dynamically incorporate the evolving communication re-

quirements of the AMR calculation.

4.2 Evolution of Communication Topology
The HyperCLaw problem examined in this work profiles

a hyperbolic shock-tube calculation, where we model the

interaction of a Mach 1.25 shock in air hitting a spheri-

cal bubble of helium. This case is analogous to one of the

experiments described by Haas and Sturtevant [11]. The

difference between the density of the helium and the sur-

rounding air causes the shock to accelerate into and then

dramatically deform the bubble. An example of the kind of

calculation HyperCLaw performs is seen in Figure 3, along

with an overlaid representation of the grids used.

For this paper, we examine a refinement of three levels (0,

1, 2), with 0 being the lowest (or base) level and 2 being

the highest (or finest) level, where most of the computation

time is spent. Three levels of refinement are typical for

calculations of this kind. Note that the refinement is a factor

of two in each of the three coordinate directions.

In Figure 4, we see the topology of message exchanges for

communication at levels 1 and 2. Note that these two lev-

els exhibit very different communication patterns. Because

level 1 represents a coarser problem than that of level 2,

there are far fewer grid cells (communicating processors) at

level 1 than at level 2. At level 2, the increase in the number

of 3D grid cells causes each processor to exchange messages

with many more cells. This results in a much denser com-

munication topology since each 3D grid cell communicates

with up to six others.

The structure of the AMR calculation provides an oppor-

tunity for HFAST to adapt its configuration to the evolving

topology. The entire calculation is divided into timesteps,

each containing distinct communication and computation

phases separated by a regridding operation that takes on

the order of hundreds of milliseconds. During this period,

the optical switches can be reconfigured to take advantage

of changes in the most significant communicating partners.

In order to justify the use of a lower degree interconnect

topology, and thus to benefit from the HFAST approach, the
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Figure 4: Topology of message exchange for HyperCLaw AMR levels 1 and 2.

proportion of communicating partners (for messages over

the bandwidth-delay product) of HyperCLaw must be sig-

nificantly less than the number of nodes, P . Recall that

the HFAST approach utilizes circuit switch technology for

only bandwidth-bound messages, while latency-bound com-

munications are routed to a secondary, low-bandwidth in-

terconnect. We thus remove all messages whose sizes are

less than 4KB from our analysis, as these message sizes are

small enough that the messages are not bandwidth-bound

on most modern interconnect technologies.

Another condition necessary to make HFAST a viable op-

tion for this dynamic calculation is the requirement that the

set of communicating partners not change unpredictably and

sharply at each time step. Otherwise, it would be impossible

to appropriately reconfigure the optical switches a priori for

a given time step.

Figure 5(a) shows the fraction of communicating part-

ners — represented as the percentage of the possible part-

ners each processor communicates with — for given AMR

timesteps of our HyperCLaw simulation (run at P = 768).

We also present Figure 5(b) which shows the percentage of

communicating partners that did not change, using both

the näıve approach based on the previous timestep and a

simple heuristic strategy based on the previous timestep at

the same AMR grid level. Observe that the heuristic ap-

proach significantly improves the percentage of communi-

cating partners that do not change across remapping phases.

This optimization will be further explored in the processor

alocation algorithm of Section 5.

Based on Figure 5(a) we observe that no timestep ex-

hibits a communication pattern that requires more than 4%

of the available pathways through a fully connected network.

While such a pattern is clearly not isomorphic to a mesh or

torus topology, it is well matched to the bisection band-

width offered by a lower-degree interconnect, provided the

interconnect topology can be adapted to the application’s

communication pattern. We thus argue that the adaptation

offered by HFAST enables a lower degree network to con-

form to the application’s complex communication topology,

whereas a lower-degree interconnect with a fixed topology,

such as a torus or mesh, would not be well suited to the com-

plex communication pattern. But this observation holds for

a snapshot of the communication topology requirements in

time. The true situation is far more complex as this topol-

ogy evolves over time in a data-dependent fashion as the

simulation progresses.

In order to understand the time-evolution of the commu-

nication topology, we focus on the incremental changes in

the set of communicating partners as the simulation pro-

gresses. To understand this analysis, it is necessary to know

that the pattern of computation for the AMR grid levels is

a level 0 timestep, within which are two level 1 timesteps,

within which are two level 2 timesteps. We exclude data

from the level 0 timesteps. As a result, our analysis of

Figure 5(b) shows a six-timestep pattern: [0], 1, 2, 2, 1, 2, 2.

Careful reading of the data shows that the changes in com-

municating partners also follows a six-step pattern, which is

most evident in the patterns of taller bars (high-percent of

the same partners). A slight variation occurs at steps 25-27

that is due to the boundary between a checkpoint/restart of

the code at that point. Overall, the heuristic of using the

same AMR level for the previous time step is an improve-
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Figure 5: HyperCLaw communication for refinement levels 1 and 2, showing (a) the percentage of commu-
nicating partners for messages greater than 4KB, and (b) the percent of these communicating partners that
stay the same between AMR timesteps. The dashed line indicates the average value.

ment to the consistency of communicating partners, and the

data strongly suggests that an algorithm that takes advan-

tage of the six-step pattern could do even better. Detailed

verification of this conjecture will be the subject of future

work. From these results we conclude that it is feasible

to accurately predict how to remap the underlying optical

switches based on a snapshot of the current communication

topology.

It is important to note that there are a wide variety of

AMR algorithms and implementations, and our observations

do not necessarily apply to all AMR simulations. However,

this analysis does show the applicability of the HFAST ap-

proach to similar AMR calculations as well as dynamic ap-

plications in general.

5. OPTIMIZATION OF THE
INTERCONNECT TOPOLOGY

Based on our analysis of communication characteristics for

both static and dynamic applications, we now describe an

optimization strategy for mapping these characteristics onto

the HFAST architecture. First, we define the algorithm for

choosing an interconnection topology (also known as “pro-

cessor allocation”) that minimizes the number of hops per

message. Next, we show that for our specific applications,

the required bandwidth is much smaller than the full band-

width available in a traditional fat-tree configuration, espe-

cially for large numbers of processors. Note that minimizing

the number of message hops reduces the number of required

internal ports; thus our motivation here is not to improve

interconnect performance, but to achieve equivalent network

rates at a lower cost.

5.1 Processor Allocation Algorithm
The effect of processor allocation has been well-observed

in the literature and has attracted renewed attention due to

increasing numbers of processors in state of the art super-

computers [4]. Processor allocation aims at relocating fre-

quently communicating processes such that they are closer

to each other in the communication topology. This has two

primary effects: smaller latency and reduced congestion (due

to messages consuming bandwidth on fewer links). Obtain-

ing a provably optimal processor allocation is very hard:

NP-Complete [17] for the general case. Here, we restrict our-

selves to a special case using constraints from the HFAST

architecture, and apply a heuristic based on graph partition-

ing.

Given a graph G = (V, E), a partitioner decomposes the

vertex set V into two or more partitions such that there is

a non-overlapping subset of the vertices among partitions.

We say an edge is cut if it connects two vertices from dif-

ferent partitions, and a vertex is a boundary vertex if it is

connected to a cut edge. In our model, each processor is

represented by a vertex in the graph, and two vertices are

connected if the associated processors communicate. The

goal of our algorithm is to minimize the number of edges

that connect vertices from different partitions, while pre-

serving the property that equal numbers of vertices are in

each partition.

We further constrain our algorithm to reflect the HFAST

networking model, that is, a set of commodity (layer-2)

packet and optical switches. The important detail here is

that most commodity packet switches have few ports (small

radix), so we examine commonly used configurations of 4-,

8-, and 16-port switches. Since we arrange these packet-

switches in a tree, for the 4-port case the root of the tree



HFAST: Reduction in Switch Ports vs. Fattree

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GTC
 8192

LBMHD
 4096

BB3D
1024

CACTUS
 1024

ELB3D
 1024

MADBENCH
  256

AVERAGE

P
e
rc

e
n

t 
R

e
d

u
ct

io
n

4 port switches

8 port switches

16 port switches

(a)

HFAST: Reduction in Message Hops vs. Fattree

72%

0%

5%

10%

15%

20%

25%

30%

GTC
 8192

LBMHD
 4096

BB3D
1024

CACTUS
 1024

ELB3D
 1024

MADBENCH
  256

AVERAGE

P
e
rc

e
n

t 
R

e
d

u
ct

io
n

(b)

Figure 6: Static application comparison of HFAST processor allocation algorithm to fully-connected fat-tree
approach showing (a) percentage decrease in number of required switch ports for 4, 8, and 16 port switch
configurations and (b) percentage decrease in number of hops (Nhops) for an 8 port switch configuration. The
concurrency level is shown below each application name.

can have four branches, and all other intermediate nodes can

have at most two branches. This constrains the number of

cuts for each partitioning: The initial partitioning can per-

form three cuts, and then each resulting partition undergoes

recursive bisection (one cut).

It is important to understand how the results of this al-

gorithm relate to the HFAST architecture, as opposed to

classical approaches to processor allocation. Based on the

partitions output by the algorithm, the HFAST approach

uses optical switches to provision switch blocks so that the

number of hops between any two nodes (processors) is the

same as the number of cut edges between those two proces-

sors. This is, in the abstract, the same as the approach of

mapping the partitions onto a fat-tree by moving the pro-

cesses to the appropriate location. However, the HFAST

architecture aims to obtain a similar performance without

moving any processes, and without requiring a fully con-

nected network.

To derive the HFAST processor allocation, we implement

the partioning algorithm using the MeTis graph partition-

ing package [16]. We then apply our optimization scheme

to detailed IPM communication profiles from runs of both

the static and dynamic applications described in Sections 3

and 4. Since this algorithm minimizes the number of hops

(Nhops) messages need to travel across the interconnect fab-

ric, we use this as the metric for comparing the average

predicted Nhops using HFAST and the measured Nhops on

a fat-tree (without processor allocation).

5.2 Static Application Results
Based on the outlined optimization scheme, we now com-

pare the potential benefits of HFAST compared with the tra-

ditional fat-tree approach. Figure 6(a) shows the savings in

the number of required port switches when using the HFAST

methodology for our studied static applications. This gives

some indication of the possible cost savings, since there is

a fixed cost associated with every switch element. Results

show that, on average, the number of switches could be re-

duced by over 50% compared with fully-balanced fat-trees,

even for these relatively small concurrency experiments (in

the context of ultra-scale systems). We also explore three

possible switch configurations — using 4, 8, and 16 ports —

to reflect different interconnect building-block options. In-

tuition may indicate that as the number of ports per switch

increases, the benefit of HFAST diminishes. However, Fig-

ure 6(a) empirically demonstrates that this is not the case:

for five of our six studied applications, the benefit of HFAST

actually increases when the number of ports increases from

4 to 16. This is an encouraging sign for utilizing HFAST

in the context of future switch technologies, which will un-

doubtedly have larger numbers of ports per switch block.

Figure 6(b) shows the benefit of processor allocation with

respect to reducing average Nhops, compared with the fat-

tree approach (using an 8-port switch configuration). This

metric reflects the latency overhead of messaging, as each

additional hop increases the communication latency compo-

nent. Observe that the HFAST approach reduces the Nhops

by almost 25% on average, and by over 72% for the 8192-

way GTC experiment — while requiring significantly fewer

hardware components than fat-tree implementations. Note

that varying numbers of processors (shown below each appli-

cation) were used for each of the static applications, based

on the largest obtainable IPM data sets. It is important

to highlight that the experiments conducted to date utilize

relatively small numbers of processors compared with the

hundreds of thousands (or even millions) that will comprise
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Figure 7: Dynamic AMR application comparison of HFAST processor allocation algorithm to fully-connected
fat-tree approach showing cumulative reduction of Nhops, using theoretically ideal and heuristic remapping
schemes on 384 and 768 processors (with an 8-port switch configuration).

future peta-scale systems. We expect the HFAST advantage

to be even more significant on these ultra-scale systems, as

the increasing diameter of their networks will dramatically

increase the gap between näıve (random) and optimized pro-

cessor allocation.

5.3 Dynamic Application Results
We now examine HFAST performance in the context of

the dynamically adapting communication requirements of

the HyperCLaw AMR code. In these experiments, we ex-

amine both 384-way and 768-way concurrencies, mapped as

3× 128 and 3× 256 processors onto a fat-tree, respectively.

The results presented in Figure 7 shows how the HFAST ap-

proach reduces the average Nhops when compared to a tra-

ditional fat-tree interconnect. Because the AMR code con-

sists of numerous remapping phases, the savings of Nhops

is shown as the aggregate total across the multiple time

iterations. Two mapping strategies are studied for each

concurrency. The first represents a theoretically ideal ap-

proach where the updated communication pattern could be

predicted before the actual remapping phase. The second

heuristic strategy takes into account that an actual appli-

cation execution would need to choose an interconnection

topology mapping based solely on information from previ-

ous timesteps. Our simple heuristic permutes the proces-

sors for HFAST timestep T using measurements from step

T −k, where the offset k is chosen to obtain the most recent

timestep at the same AMR grid level — thus avoiding the

sharp changes between grid levels seen in Figure 5(b).

Several interesting observations can be made from the Hy-

perCLaw performance data of Figure 7. First, by utilizing

an interconnect that can dynamically adapt to an underly-

ing application’s evolving communication requirements, the

aggregate Nhops can be reduced substantially as the calcula-

tion progresses through multiple timesteps and data remap-

ping phases — thereby reducing communication overhead.

Next, our simple heuristic mapping scheme attains reason-

able performance relative to the theoretical ideal (41% and

53% of the ideal case for P=384 and P=768 respectively).

Finally, as expected, it can be seen that the higher concur-

rency experiment (P=768) achieves more significant savings

in aggregate Nhops compared with the smaller (P=384) test

case. These performance gains will continue improving with

processor count, especially for the ultra-scale systems tar-

geted by HFAST, where concurrencies are expected to be

two or more orders of magnitude greater than our existing

experimental platform.

6. SUMMARY AND CONCLUSIONS
There is a crisis looming in parallel computing driven by

rapidly increasing concurrency and the non-linear scaling of

switch costs. It is therefore imperative to investigate inter-

connect alternatives, to ensure that future HPC systems can

cost-effectively support the communication requirements of

ultra-scale applications across a broad range of scientific dis-

ciplines. To address these challenges, we propose HFAST, a

hybrid switch architecture that uses circuit switches to dy-

namically reconfigure lower-degree interconnects based on

the topological requirements of the underlying scientific ap-

plication.

This work extends our previous HFAST proposal in sev-

eral important directions. First, we presented an optimiza-

tion methodology for efficiently mapping application com-

munication requirements onto a processor topology. We

then utilized the communication characteristics of six large-

scale scientific applications to explore the possible benefits

of the HFAST methodology. Results show that, on aver-

age, the HFAST approach can save more than 50% of the



required switch component hardware compared with a tradi-

tional fat-tree approach. Furthermore, HFAST reduces the

number of required message hops by an average of 25% —

thus demonstrating a potentially significant savings in both

infrastructure cost and communication latency overhead.

Next, we conducted an extensive communication-requirement

analyis of an adaptive mesh refinement simulation, to study

the potential of utilizing our reconfigurable interconnect so-

lution in the context of dynamically adapting multi-scale

computations. Results show that by employing our heuris-

tic remapping algorithm, the HFAST approach allows for

significant savings in communication overhead, while using

fewer network components. Moreover, we expect these sav-

ings to grow considerably for future peta-scale architectures,

which will undoubtedly require unprecedented levels of con-

currencies.

It is important to highlight that the topological permuta-

tions discussed in our study are equally applicable to low-

degree fixed-topology networks or even IBM’s hybrid ICN

interconnects [10]. However — unlike HFAST which can

dynamically reconfigure the underlying circuit switches —

these approaches would require a considerable amount of

task migration overhead in order to maintain an optimal

embedding of the evolving communication topology.

We also note that the heuristic remapping algorithm in-

troduced in this paper could be applicable to optimizing pro-

cess placement on systems employing a thin-tree topology,

such as the Tokyo Institute of Technology’s TSUBAME su-

percomputing system [22]. In a thin-tree, the upper-tiers of

the fat-tree topology have fewer links than are necessary to

achieve full-bisection bandwidth. This topology can exploit

the sparseness of communication patterns that we observed

in Section 3, but only by sorting the process mapping to

processes. However, we suspect that the high cost of pro-

cess migration would isolate the benefits of this approach to

static applications. Further examination of the application

of our mapping algorithm to thin-trees will be the subject

of future work.

In summary, our preliminary findings indicate that an

adaptive interconnection architecture such as HFAST offers

a compelling combination of flexibility and cost-scaling for

next-generation ultra-scale systems. HFAST offers the op-

portunity for topological permutations without the consid-

erable overhead that would be required for task migration.

Future work will expand the scope our application suite and

refine our topology optimization schemes, while examining

the particular technological components that would bring

the HFAST network into existence.
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